A library for working with phylogenetic and population genetic data.
v0.32.0
tree/function/functions.cpp
Go to the documentation of this file.
1 /*
2  Genesis - A toolkit for working with phylogenetic data.
3  Copyright (C) 2014-2020 Lucas Czech and HITS gGmbH
4 
5  This program is free software: you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation, either version 3 of the License, or
8  (at your option) any later version.
9 
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  GNU General Public License for more details.
14 
15  You should have received a copy of the GNU General Public License
16  along with this program. If not, see <http://www.gnu.org/licenses/>.
17 
18  Contact:
19  Lucas Czech <lucas.czech@h-its.org>
20  Exelixis Lab, Heidelberg Institute for Theoretical Studies
21  Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
22 */
23 
32 
37 #include "genesis/tree/tree.hpp"
39 
41 
42 #include <algorithm>
43 #include <cassert>
44 #include <functional>
45 #include <unordered_set>
46 #include <vector>
47 
48 #ifdef GENESIS_OPENMP
49 # include <omp.h>
50 #endif
51 
52 namespace genesis {
53 namespace tree {
54 
55 // =================================================================================================
56 // Node Properties
57 // =================================================================================================
58 
59 bool is_leaf( TreeLink const& link )
60 {
61  return &( link.next() ) == &link;
62 }
63 
64 bool is_leaf( TreeNode const& node )
65 {
66  return is_leaf( node.link() );
67 }
68 
69 bool is_leaf( TreeEdge const& edge )
70 {
71  return is_leaf( edge.secondary_link() );
72 }
73 
74 bool is_inner( TreeLink const& link )
75 {
76  return &( link.next() ) != &link;
77 }
78 
79 bool is_inner( TreeNode const& node )
80 {
81  return is_inner( node.link() );
82 }
83 
84 bool is_inner( TreeEdge const& edge )
85 {
86  return is_inner( edge.secondary_link() );
87 }
88 
89 bool is_root( TreeLink const& link )
90 {
91  return is_root( link.node() );
92 }
93 
94 bool is_root( TreeNode const& node )
95 {
96  // The link_ is always the one pointing towards the root. Also, the edge of that link always has
97  // the primary link set to that it points towards the root.
98  // At the root itself, however, this means we are pointing to ourselves. Use this to check
99  // if this node is the root.
100  return &( node.link().edge().primary_link() ) == &( node.link() );
101 }
102 
103 size_t degree( TreeLink const& link )
104 {
105  return degree( link.node() );
106 }
107 
108 size_t degree( TreeNode const& node )
109 {
110  size_t dgr = 0;
111  TreeLink const* lnk = &node.link();
112 
113  do {
114  ++dgr;
115  lnk = &lnk->next();
116  } while( lnk != &node.link() );
117 
118  return dgr;
119 }
120 
121 // =================================================================================================
122 // Node Count Properties
123 // =================================================================================================
124 
125 size_t max_degree( Tree const& tree )
126 {
127  size_t max = 0;
128  for( size_t i = 0; i < tree.node_count(); ++i ) {
129  max = std::max( max, degree( tree.node_at(i) ) );
130  }
131  return max;
132 }
133 
134 bool is_bifurcating( Tree const& tree, bool loose )
135 {
136  // Iterate all nodes and verify their degree.
137  for( size_t i = 0; i < tree.node_count(); ++i ) {
138  auto const deg = degree( tree.node_at(i) );
139 
140  // Any degree > 3 is multifurcating.
141  if( deg > 3 ) {
142  return false;
143  }
144 
145  // A degree of 2 is okay of we are loose, and always okay for the root.
146  if( deg == 2 ) {
147  auto const isroot = ( tree.node_at(i).index() == tree.root_node().index() );
148  assert( isroot == is_root( tree.node_at(i) ));
149 
150  if( ! isroot && ! loose ) {
151  return false;
152  }
153  }
154  }
155  return true;
156 }
157 
158 bool is_binary( Tree const& tree, bool loose )
159 {
160  return is_bifurcating( tree, loose );
161 }
162 
163 bool is_rooted( Tree const& tree )
164 {
165  return degree( tree.root_node() ) == 2;
166 }
167 
168 size_t leaf_node_count( Tree const& tree )
169 {
170  size_t sum = 0;
171  for (size_t i = 0; i < tree.node_count(); ++i) {
172  auto const& n = tree.node_at(i);
173  if( is_leaf(n) ) {
174  ++sum;
175  }
176  }
177  return sum;
178 }
179 
180 size_t inner_node_count( Tree const& tree )
181 {
182  return tree.node_count() - leaf_node_count( tree );
183 }
184 
185 size_t node_count( Tree const& tree )
186 {
187  return tree.node_count();
188 }
189 
190 size_t leaf_edge_count( Tree const& tree )
191 {
192  size_t sum = 0;
193  for( auto const& edge : tree.edges() ) {
194  if( is_leaf( edge.primary_node() ) || is_leaf( edge.secondary_node() ) ) {
195  ++sum;
196  }
197  }
198  return sum;
199 }
200 
201 size_t inner_edge_count( Tree const& tree )
202 {
203  size_t sum = 0;
204  for( auto const& edge : tree.edges() ) {
205  if( is_inner( edge.primary_node() ) && is_inner( edge.secondary_node() ) ) {
206  ++sum;
207  }
208  }
209  return sum;
210 }
211 
212 size_t edge_count( Tree const& tree )
213 {
214  return tree.edge_count();
215 }
216 
217 std::vector<size_t> inner_edge_indices( Tree const& tree )
218 {
219  std::vector<size_t> result;
220  for( auto const& edge : tree.edges() ) {
221  if( is_inner( edge.secondary_node() ) ) {
222  result.push_back( edge.index() );
223  }
224  }
225  return result;
226 }
227 
228 std::vector<size_t> leaf_edge_indices( Tree const& tree )
229 {
230  std::vector<size_t> result;
231  for( auto const& edge : tree.edges() ) {
232  if( is_leaf( edge.secondary_node() ) ) {
233  result.push_back( edge.index() );
234  }
235  }
236  return result;
237 }
238 
239 std::vector<size_t> inner_node_indices( Tree const& tree )
240 {
241  std::vector<size_t> result;
242  for( auto const& node : tree.nodes() ) {
243  if( is_inner( node )) {
244  result.push_back( node.index() );
245  }
246  }
247  return result;
248 }
249 
250 std::vector<size_t> leaf_node_indices( Tree const& tree )
251 {
252  std::vector<size_t> result;
253  for( auto const& node : tree.nodes() ) {
254  if( is_leaf( node )) {
255  result.push_back( node.index() );
256  }
257  }
258  return result;
259 }
260 
261 // =================================================================================================
262 // Tree Sides
263 // =================================================================================================
264 
266 {
267  // Get a quadratic matrix: for each edge, it gives a value whether each other edge is
268  // proximal (1) or distal (-1) relative to itself (0).
269  auto result = utils::Matrix<signed char>( tree.edge_count(), tree.edge_count(), 0 );
270 
271  // Helper function that traverses the subtree starting at a link,
272  // and for each edge in the subtree, sets its entry in the matrix to the given sign.
273  auto traverse = [&]( TreeLink const& start_link, size_t i, signed char sign ){
274  auto link = &( start_link.next() );
275  while( link != &start_link ) {
276  result( i, link->edge().index() ) = sign;
277  link = &( link->outer().next() );
278  }
279  };
280 
281  // For each edge, do the traversal in both directions and set the signs.
282  // This can probably be done more efficiently with only one smart traversal of the whole tree,
283  // but this function is not needed often enough right now.
284  for( size_t i = 0; i < tree.edge_count(); ++i ) {
285  traverse( tree.edge_at(i).primary_link(), i, -1 );
286  traverse( tree.edge_at(i).secondary_link(), i, 1 );
287  }
288 
289  return result;
290 }
291 
293 {
294  auto mat = utils::Matrix<signed char>( tree.node_count(), tree.node_count(), 0 );
295 
296  // Fill every row of the matrix.
297  #pragma omp parallel for
298  for( size_t i = 0; i < tree.node_count(); ++i ) {
299  auto const& row_node = tree.node_at(i);
300  auto const row_index = row_node.index();
301  auto const primary_link = &row_node.primary_link();
302 
303  // Fill root side subtree with 1s.
304  // We do set the value of inner nodes multiple times, but that's no problem.
305  // Also, we need to do an extra check for the root here, in order to set all
306  // subtrees of the root to -1.
307  signed char const value = is_root( row_node ) ? -1 : 1;
308  auto current_link = &( primary_link->outer() );
309  while( current_link != primary_link ) {
310  mat( row_index, current_link->node().index() ) = value;
311  current_link = &( current_link->next().outer() );
312  }
313 
314  // Fill all non-root side subtrees with -1s.
315  // We explicitly go through all non-root links of the node, in order to be really clear
316  // about our intentions. It would also work to simply follow the link chain until
317  // we reach the primary link again. However, this would also set -1 to our row node,
318  // thus we'd have to reset it, making the algorithm a bit messy.
319  // So, to be clear and clean, we avoid this.
320  auto sub_link = &( primary_link->next() );
321  while( sub_link != primary_link ) {
322 
323  // Now, for a given non-root subtree, set everything to -1.
324  current_link = &( sub_link->outer() );
325  while( current_link != sub_link ) {
326  mat( row_index, current_link->node().index() ) = -1;
327  current_link = &( current_link->next().outer() );
328  }
329 
330  // Go to next subtree.
331  sub_link = &( sub_link->next() );
332  }
333 
334  // Check that the diagonal element is untouched.
335  assert( mat( row_index, row_index ) == 0 );
336  }
337 
338  return mat;
339 }
340 
341 // =================================================================================================
342 // Subtrees
343 // =================================================================================================
344 
345 size_t subtree_size( Tree const& tree, TreeLink const& link )
346 {
347  if( ! belongs_to( tree, link )) {
348  throw std::runtime_error(
349  "Cannot caluclate subtree_size, as the given Link does not belong to the Tree."
350  );
351  }
352 
353  // TODO This is a quick and dirty solution. Traverse the whole subtree, add all nodes to a set
354  // and simply return the size of that set.
355 
356  std::unordered_set< TreeNode const* > visited_nodes;
357 
358  auto cur_link = &link.outer();
359  while( cur_link != &link ) {
360  visited_nodes.insert( &cur_link->node() );
361  cur_link = &cur_link->next().outer();
362  }
363 
364  return visited_nodes.size();
365 }
366 
367 std::vector<size_t> subtree_sizes( Tree const& tree, TreeNode const& node )
368 {
369  if( ! belongs_to( tree, node )) {
370  throw std::runtime_error(
371  "Cannot calculate subtree_sizes(), as the given Node does not belong to the Tree."
372  );
373  }
374 
375  // TODO this is an overly complex and thus error prone solution, maybe there is a better way?!
376 
377  // Prepare result vector.
378  std::vector<size_t> result;
379  result.resize( tree.node_count(), 0 );
380 
381  // We use a stack to track the subtree sizes.
382  // We store the entry link of the preorder traversal of the nodes. The entry link is the one
383  // that is given when visiting the node first while doing a eulertour traversal of the tree.
384  // This is always the next() link after the towards-the-starting-node/root link.
385  std::vector< TreeLink const* > stack;
386  stack.push_back( &node.link() );
387 
388  // Traverse the tree.
389  for( auto it : eulertour( node )) {
390 
391  // If this is the last time we visit that node on our way back up the tree.
392  // (The second part of the condition checks whether it is the starting node, because
393  // in this case, we do not want to remove it.)
394  if( &it.link().next() == stack.back() && stack.back() != &node.link() ) {
395 
396  // We finished with a subtree. Add the cummulative number of children of that subtree
397  // to the parent node, and remove the parent from the stack (as we are done with it).
398  auto st_size = result[ stack.back()->node().index() ];
399  stack.pop_back();
400  result[ stack.back()->node().index() ] += st_size;
401 
402  // If this node is already the current top stack element.
403  } else if( &it.node() == &stack.back()->node() ) {
404 
405  // Do nothing.
406 
407  // If it is a leaf.
408  } else if( is_leaf( it.link() )) {
409 
410  // Simply increment its parent's counter.
411  ++result[ stack.back()->node().index() ];
412 
413  // If we will visit that node in the future again.
414  } else {
415 
416  // Add a count for the immediate child (i.e., the current node) to the current stack
417  // end (i.e., increment the counter of children of that node),
418  // then add the current node itself to the stack, so that in the next iteration,
419  // we will increase its counts.
420  ++result[ stack.back()->node().index() ];
421  stack.push_back( &it.link() );
422  }
423  }
424 
425  // The stack now should contain only a single node, which is the starting node itself.
426  assert( stack.size() == 1 && stack.back() == &node.link() );
427 
428  // The size of the subtree of the starting node is always the number of nodes in the tree
429  // minus one for that node itself (as it is not counted as part of its subtree).
430  assert( result[ node.index() ] == tree.node_count() - 1 );
431 
432  return result;
433 }
434 
435 std::vector<size_t> subtree_sizes( Tree const& tree )
436 {
437  return subtree_sizes( tree, tree.root_node() );
438 }
439 
440 size_t subtree_max_path_height( Tree const& tree, TreeLink const& link )
441 {
442  if( ! belongs_to( tree, link )) {
443  throw std::runtime_error(
444  "Cannot calculate subtree_max_path_height(), "
445  "as the given Link does not belong to the Tree."
446  );
447  }
448 
449  // TODO make more efficient. no need for full dist vector.
450  auto dists = node_path_length_vector( tree, link.outer().node() );
451  size_t max = 0;
452 
453  auto cur_link = &link.outer();
454  while( cur_link != &link ) {
455  max = std::max( max, dists[ cur_link->node().index() ] );
456  cur_link = &cur_link->next().outer();
457  }
458  return max;
459 }
460 
461 std::vector<size_t> subtree_max_path_heights( Tree const& tree, TreeNode const& node )
462 {
463  if( ! belongs_to( tree, node )) {
464  throw std::runtime_error(
465  "Cannot calculate subtree_max_path_heights(), "
466  "as the given Node does not belong to the Tree."
467  );
468  }
469 
470  auto result = std::vector<size_t>( tree.node_count(), 0 );
471 
472  // Recursive helper function that evaluates the wanted size for a given subtree,
473  // stores the result in the vector and returns it for recursive usage.
474  std::function< size_t( TreeLink const* )> rec_subtree_height = [&]( TreeLink const* l ) {
475  size_t link_max = 0;
476  TreeLink const* cl = &l->next();
477  while( cl != l ) {
478  link_max = std::max( link_max, 1 + rec_subtree_height( &cl->outer() ));
479  cl = &cl->next();
480  }
481 
482  result[ l->node().index() ] = link_max;
483  return link_max;
484  };
485 
486  // Loop all subtrees of the given node and find the highest.
487  // This loop is a bit different from the one in the recursive function, as we need to evaluate
488  // all links of the given starting node, instead of just the ones away from the start node.
489  size_t node_max = 0;
490  TreeLink const* cur_l = &node.link();
491  do {
492  node_max = std::max( node_max, 1 + rec_subtree_height( &cur_l->outer() ));
493  cur_l = &cur_l->next();
494  } while( cur_l != &node.link() );
495  result[ node.index() ] = node_max;
496 
497  return result;
498 }
499 
500 std::vector<size_t> subtree_max_path_heights( Tree const& tree )
501 {
502  return subtree_max_path_heights( tree, tree.root_node() );
503 }
504 
505 utils::Matrix<signed char> sign_matrix( Tree const& tree, bool compressed )
506 {
507  // Edge cases and input checks.
508  if( tree.empty() ) {
510  }
511  if( ! is_rooted( tree )) {
512  throw std::invalid_argument( "Tree is not rooted. Cannot calculate its sign matrix." );
513  }
514  if( ! is_bifurcating( tree )) {
515  throw std::invalid_argument( "Tree is not bifurcating. Cannot calculate its sign matrix." );
516  }
517 
518  // Prepare a result matrix of the full size. For the compressed version,
519  // we later replate it again.
520  auto result = utils::Matrix<signed char>( tree.node_count(), tree.node_count(), 0 );
521 
522  // Helper function that fills all columns of a subtree with a given sign.
523  auto fill_subtree_indices = [&]( size_t row_idx, Subtree const& st, signed char sign ){
524  for( auto const& it : preorder(st) ) {
525  result( row_idx, it.node().index() ) = sign;
526  }
527  };
528 
529  // Fill every row of the matrix.
530  #pragma omp parallel for
531  for( size_t i = 0; i < tree.node_count(); ++i ) {
532  auto const& row_node = tree.node_at(i);
533  auto const row_idx = row_node.index();
534 
535  if( row_idx == tree.root_node().index() ) {
536 
537  // The root node is special: we use its two subtrees directly.
538  assert( &row_node.link().next().next() == &row_node.link() );
539  fill_subtree_indices( row_idx, Subtree{ row_node.link().outer() }, +1 );
540  fill_subtree_indices( row_idx, Subtree{ row_node.link().next().outer() }, -1 );
541 
542  } else if( is_inner( row_node )) {
543 
544  // All other inner nodes are filled using their subtrees.
545  assert( &row_node.link().next().next().next() == &row_node.link() );
546  fill_subtree_indices( row_idx, Subtree{ row_node.link().next().outer() }, +1 );
547  fill_subtree_indices( row_idx, Subtree{ row_node.link().next().next().outer() }, -1 );
548  }
549  }
550 
551  // For the compressed version, we re-use the previous result matrix,
552  // and simply fill a new one with the needed rows and columns.
553  // The data is not too big, and this is way easier and cleaner to implement.
554  if( compressed ) {
555  // Create a matrix with rows for each inner node and columns for each tip node.
556  auto const in_node_idcs = inner_node_indices( tree );
557  auto const lf_node_idcs = leaf_node_indices( tree );
558  auto result_cmpr = utils::Matrix<signed char>( in_node_idcs.size(), lf_node_idcs.size(), 0 );
559 
560  // Fill the matrix at the indices that belong to inner nodes (for rows) and
561  // leaf nodes (for columns).
562  for( size_t r = 0; r < in_node_idcs.size(); ++r ) {
563  for( size_t c = 0; c < lf_node_idcs.size(); ++c ) {
564  result_cmpr( r, c ) = result( in_node_idcs[r], lf_node_idcs[c] );
565  }
566  }
567 
568  // Replace the result matrix efficiently.
569  using std::swap;
570  swap( result, result_cmpr );
571  }
572 
573  return result;
574 }
575 
576 // =================================================================================================
577 // Misc
578 // =================================================================================================
579 
580 std::vector< TreeLink const* > path_to_root( TreeNode const& node )
581 {
582  std::vector< TreeLink const* > path;
583 
584  // Move towards the root and record all links in between.
585  TreeLink const* cur_link = &node.primary_link();
586  while( &cur_link->edge().secondary_link() == cur_link ) {
587 
588  // The above while condition means: is it the root?! Assert, that the default way of
589  // checking for the root by using the node gives the same result.
590  assert( ! is_root( cur_link->node() ));
591 
592  // Assert that the primary direction is correct.
593  assert( cur_link == &cur_link->edge().secondary_link() );
594 
595  // Add the primary link of the current node to the list.
596  path.push_back( cur_link );
597 
598  // Move one node towards the root.
599  // Assert that the default way of finding the next node towards the root (by using
600  // the edge) gives the same result as simply using the link's outer node.
601  // This is the case because the cur link is the one that points towards the root
602  // (which was asserted above).
603  assert( &cur_link->edge().primary_link() == &cur_link->outer() );
604  cur_link = &cur_link->outer().node().primary_link();
605  }
606 
607  // Now finally add the root itself and return the list.
608  assert( is_root( cur_link->node() ));
609  path.push_back( cur_link );
610  return path;
611 }
612 
613 TreeNode const& lowest_common_ancestor( TreeNode const& node_a, TreeNode const& node_b )
614 {
615  // Speedup and simplification.
616  if( &node_a == &node_b ) {
617  return node_a;
618  }
619 
620  auto path_a = path_to_root( node_a );
621  auto path_b = path_to_root( node_b );
622 
623  // We must have at least the two original links in the front and the root in the back.
624  assert( path_a.size() > 0 && path_b.size() > 0 );
625  assert( path_a.front() == &node_a.link() );
626  assert( path_b.front() == &node_b.link() );
627  assert( path_a.back() == path_b.back() );
628 
629  // Remove from back as long as the last two elements are the same.
630  // At the end of this, the remaining links are the ones on the path between
631  // the two original links.
632  while(
633  path_a.size() > 1 &&
634  path_b.size() > 1 &&
635  path_a.at( path_a.size() - 1 ) == path_b.at( path_b.size() - 1 ) &&
636  path_a.at( path_a.size() - 2 ) == path_b.at( path_b.size() - 2 )
637  ) {
638  path_a.pop_back();
639  path_b.pop_back();
640  }
641 
642  // Now, the last elements need to be the same (the LCA of the start and finish node).
643  assert( path_a.size() > 0 && path_b.size() > 0 );
644  assert( path_a.back() == path_b.back() );
645 
646  return path_a.back()->node();
647 }
648 
650 {
651  auto const& c_node_a = static_cast< TreeNode const& >( node_a );
652  auto const& c_node_b = static_cast< TreeNode const& >( node_b );
653  return const_cast< TreeNode& >( lowest_common_ancestor( c_node_a, c_node_b ));
654 }
655 
657 {
658  auto res = utils::Matrix<size_t>( tree.node_count(), tree.node_count() );
659 
660  // This is not the best way to calculate all pairwise LCAs.
661  // In the Quartet Scores code, we use range minimum queries and eulertours to achive the
662  // same result in less time. But for now, this code is good enough.
663 
664  // Parallel specialized code.
665  #ifdef GENESIS_OPENMP
666 
667  // We only need to calculate the upper triangle. Get the number of indices needed
668  // to describe this triangle.
669  size_t const max_k = utils::triangular_size( tree.node_count() );
670 
671  #pragma omp parallel for
672  for( size_t k = 0; k < max_k; ++k ) {
673 
674  // For the given linear index, get the actual position in the Matrix.
675  auto const rc = utils::triangular_indices( k, tree.node_count() );
676  auto const r = rc.first;
677  auto const c = rc.second;
678 
679  auto const& lca = lowest_common_ancestor( tree.node_at(r), tree.node_at(c) );
680  res( r, c ) = lca.index();
681  res( c, r ) = lca.index();
682  }
683 
684  // Lastly, because the trinangular indices exluce the diagonale, we need to fill this
685  // by hand. Luckily, those are always the indices themselves, as the LCA of a node
686  // and itself is again itself.
687  #pragma omp parallel for
688  for( size_t d = 0; d < tree.node_count(); ++d ) {
689  res( d, d ) = d;
690  }
691 
692  // If no threads are available at all, use serial version.
693  #else
694 
695  for( size_t r = 0; r < tree.node_count(); ++r ) {
696 
697  // The result is symmetric - we only calculate the upper triangle.
698  for( size_t c = r; c < tree.node_count(); ++c ) {
699 
700  auto const& lca = lowest_common_ancestor( tree.node_at(r), tree.node_at(c) );
701  res( r, c ) = lca.index();
702  res( c, r ) = lca.index();
703  }
704 
705  // See above: the diagonale contains its indices.
706  assert( res( r, r ) == r );
707  }
708 
709  #endif
710 
711  return res;
712 }
713 
714 } // namespace tree
715 } // namespace genesis
genesis::placement::swap
void swap(Sample &lhs, Sample &rhs)
Definition: sample.cpp:104
genesis::tree::TreeEdge::primary_link
TreeLink & primary_link()
Return the TreeLink of this TreeEdge that points towards the root.
Definition: edge.hpp:114
genesis::tree::leaf_node_count
size_t leaf_node_count(Tree const &tree)
Count the number of leaf Nodes of a Tree.
Definition: tree/function/functions.cpp:168
genesis::tree::Subtree::link
TreeLink const & link() const
Get the TreeLink that separates the subtree from the rest of the tree.
Definition: subtree.hpp:125
genesis::tree::Tree::node_count
size_t node_count() const
Return the number of TreeNodes of the Tree.
Definition: tree/tree.hpp:264
genesis::tree::subtree_max_path_heights
std::vector< size_t > subtree_max_path_heights(Tree const &tree, TreeNode const &node)
Definition: tree/function/functions.cpp:461
genesis::utils::sum
double sum(const Histogram &h)
Definition: utils/math/histogram/stats.cpp:140
genesis::tree::inner_node_count
size_t inner_node_count(Tree const &tree)
Count the number of inner Nodes.
Definition: tree/function/functions.cpp:180
genesis::tree::sign_matrix
utils::Matrix< signed char > sign_matrix(Tree const &tree, bool compressed)
Compute the sign matrix or Sequential Binary Partition (SBP) of a Tree.
Definition: tree/function/functions.cpp:505
eulertour.hpp
genesis::tree::is_inner
bool is_inner(TreeLink const &link)
Return true iff the node of the given link is an inner node.
Definition: tree/function/functions.cpp:74
tree.hpp
Header of Tree class.
genesis::tree::is_binary
bool is_binary(Tree const &tree, bool loose)
Alias for is_bifurcating().
Definition: tree/function/functions.cpp:158
functions.hpp
genesis::tree::lowest_common_ancestor
TreeNode const & lowest_common_ancestor(TreeNode const &node_a, TreeNode const &node_b)
Return the lowest common ancestor of two TreeNodes.
Definition: tree/function/functions.cpp:613
genesis::tree::Tree::node_at
TreeNode & node_at(size_t index)
Return the TreeNode at a certain index.
Definition: tree/tree.hpp:220
genesis::tree::subtree_max_path_height
size_t subtree_max_path_height(Tree const &tree, TreeLink const &link)
Calculate the height of a subtree, that is, the maximum path length to a leaf of that subtree,...
Definition: tree/function/functions.cpp:440
genesis::tree::Tree::edge_at
TreeEdge & edge_at(size_t index)
Return the TreeEdge at a certain index.
Definition: tree/tree.hpp:238
genesis::tree::preorder
utils::Range< IteratorPreorder< true > > preorder(ElementType const &element)
Definition: tree/iterator/preorder.hpp:264
genesis::tree::inner_edge_indices
std::vector< size_t > inner_edge_indices(Tree const &tree)
Get a list of the edge indices of all inner edges, that is, all TreeEdges that do not lead to a leaf ...
Definition: tree/function/functions.cpp:217
genesis::tree::belongs_to
bool belongs_to(Tree const &tree, TreeNode const &node)
Return whether the TreeNode belongs to the Tree, i.e., whether it is owned by the Tree.
Definition: tree/function/operators.cpp:220
genesis::tree::degree
size_t degree(TreeLink const &link)
Return the degree of the node for a given TreeLink, i.e. how many neighbouring nodes it has.
Definition: tree/function/functions.cpp:103
genesis::tree::Tree::root_node
TreeNode & root_node()
Return the TreeNode at the current root of the Tree.
Definition: tree/tree.hpp:300
genesis::utils::triangular_indices
std::pair< size_t, size_t > triangular_indices(size_t k, size_t n)
Given a linear index in a upper triangular Matrix, find the corresponding Matrix indices.
Definition: utils/containers/matrix/operators.cpp:44
genesis::utils::Matrix
Definition: placement/function/emd.hpp:53
genesis::tree::max_degree
size_t max_degree(Tree const &tree)
Return the highest degree of the Nodes of a Tree.
Definition: tree/function/functions.cpp:125
genesis::tree::TreeNode::primary_link
TreeLink & primary_link()
Return the TreeLink that points towards the root.
Definition: tree/tree/node.hpp:110
genesis::tree::path_to_root
std::vector< TreeLink const * > path_to_root(TreeNode const &node)
Helper function that finds all TreeLinks between a given TreeNode and the root of the Tree.
Definition: tree/function/functions.cpp:580
genesis::tree::path
utils::Range< IteratorPath< true > > path(ElementType const &start, ElementType const &finish)
Definition: path.hpp:337
genesis::tree::leaf_edge_count
size_t leaf_edge_count(Tree const &tree)
Return the number of Edges of a Tree that lead to a leaf Node.
Definition: tree/function/functions.cpp:190
genesis::tree::Tree
Class for representing phylogenetic trees.
Definition: tree/tree.hpp:97
subtree.hpp
genesis::tree::node_count
size_t node_count(Tree const &tree)
Return the number of Nodes of a Tree. Same as Tree::node_count().
Definition: tree/function/functions.cpp:185
genesis::tree::Tree::empty
bool empty() const
Return whether the Tree is empty (i.e., has no nodes, edges and links).
Definition: tree/tree.hpp:194
genesis::tree::is_root
bool is_root(TreeLink const &link)
Return whether the link belongs to the root node of its Tree.
Definition: tree/function/functions.cpp:89
genesis::tree::Subtree
Reference to a subtree of a Tree.
Definition: subtree.hpp:69
genesis::tree::TreeEdge
Definition: edge.hpp:60
genesis::tree::TreeNode
Definition: tree/tree/node.hpp:58
genesis
Container namespace for all symbols of genesis in order to keep them separate when used as a library.
Definition: placement/formats/edge_color.cpp:42
genesis::tree::TreeNode::link
TreeLink & link()
Return the TreeLink that points towards the root.
Definition: tree/tree/node.hpp:129
genesis::tree::inner_edge_count
size_t inner_edge_count(Tree const &tree)
Return the number of Edges of a Tree that do not lead to a leaf Node.
Definition: tree/function/functions.cpp:201
operators.hpp
Tree operator functions.
genesis::tree::Tree::nodes
utils::Range< IteratorNodes > nodes()
Definition: tree/tree.hpp:418
genesis::tree::Tree::edges
utils::Range< IteratorEdges > edges()
Definition: tree/tree.hpp:452
genesis::tree::is_bifurcating
bool is_bifurcating(Tree const &tree, bool loose)
Return whether the Tree is bifurcating.
Definition: tree/function/functions.cpp:134
genesis::tree::subtree_sizes
std::vector< size_t > subtree_sizes(Tree const &tree, TreeNode const &node)
Calculate the sizes of all subtrees as seen from the given TreeNode.
Definition: tree/function/functions.cpp:367
genesis::tree::leaf_edge_indices
std::vector< size_t > leaf_edge_indices(Tree const &tree)
Get a list of the edge indices of all leaf edges, that is, all TreeEdges that lead to a leaf TreeNode...
Definition: tree/function/functions.cpp:228
genesis::tree::leaf_node_indices
std::vector< size_t > leaf_node_indices(Tree const &tree)
Get a list of the node indices of all leaf TreeNodes.
Definition: tree/function/functions.cpp:250
genesis::tree::is_rooted
bool is_rooted(Tree const &tree)
Return whether the Tree is rooted, that is, whether the root node has two neighbors.
Definition: tree/function/functions.cpp:163
genesis::tree::lowest_common_ancestors
utils::Matrix< size_t > lowest_common_ancestors(Tree const &tree)
Return the lowest common ancestor of each pair of TreeNodes for a given tree, in form of a Matrix of ...
Definition: tree/function/functions.cpp:656
operators.hpp
Matrix operators.
genesis::tree::edge_sides
utils::Matrix< signed char > edge_sides(Tree const &tree)
Create a Matrix that indiciaces the relative position of the Edges of a Tree, i.e....
Definition: tree/function/functions.cpp:265
genesis::tree::inner_node_indices
std::vector< size_t > inner_node_indices(Tree const &tree)
Get a list of the node indices of all inner TreeNodes.
Definition: tree/function/functions.cpp:239
genesis::tree::eulertour
utils::Range< IteratorEulertour< true > > eulertour(ElementType const &element)
Definition: eulertour.hpp:206
genesis::tree::TreeNode::index
size_t index() const
Return the index of this Node.
Definition: tree/tree/node.hpp:102
genesis::tree::subtree_size
size_t subtree_size(Tree const &tree, TreeLink const &link)
Return the size of the subtree defined by the given TreeLink, measured in number of nodes.
Definition: tree/function/functions.cpp:345
genesis::tree::is_leaf
bool is_leaf(TreeLink const &link)
Return true iff the node of the given link is a leaf node.
Definition: tree/function/functions.cpp:59
distances.hpp
Header of Tree distance methods.
genesis::utils::triangular_size
size_t triangular_size(size_t n)
Calculate the number of linear indices needed for a triangular Matrix of size n.
Definition: utils/containers/matrix/operators.cpp:62
genesis::tree::node_path_length_vector
std::vector< size_t > node_path_length_vector(Tree const &tree, TreeNode const &node)
Return a vector containing the depth of all nodes with respect to the given start node.
Definition: tree/function/distances.cpp:98
genesis::tree::TreeEdge::secondary_link
TreeLink & secondary_link()
Return the TreeLink of this TreeEdge that points away from the root.
Definition: edge.hpp:130
genesis::tree::edge_count
size_t edge_count(Tree const &tree)
Return the number of Edges of a Tree. Same as Tree::edge_count().
Definition: tree/function/functions.cpp:212
genesis::tree::node_root_direction_matrix
utils::Matrix< signed char > node_root_direction_matrix(Tree const &tree)
Calculate a Matrix that indicates the nodes on the root side of a given node.
Definition: tree/function/functions.cpp:292
preorder.hpp
genesis::tree::Tree::edge_count
size_t edge_count() const
Return the number of TreeEdges of the Tree.
Definition: tree/tree.hpp:272